The Late Endosome is Essential for mTORC1 Signaling
نویسندگان
چکیده
The multisubunit mTORC1 complex integrates signals from growth factors and nutrients to regulate protein synthesis, cell growth, and autophagy. To examine how endocytic trafficking might be involved in nutrient regulation of mTORC1, we perturbed specific endocytic trafficking pathways and measured mTORC1 activity using S6K1 as a readout. When early/late endosomal conversion was blocked by either overexpression of constitutively active Rab5 (Rab5CA) or knockdown of the Rab7 GEF hVps39, insulin- and amino acid-stimulated mTORC1/S6K1 activation were inhibited, and mTOR localized to hybrid early/late endosomes. Inhibition of other stages of endocytic trafficking had no effect on mTORC1. Overexpression of Rheb, which activates mTOR independently of mTOR localization, rescued mTORC1 signaling in cells expressing Rab5CA, whereas hyperactivation of endogenous Rheb in TSC2-/- MEFs did not. These data suggest that integrity of late endosomes is essential for amino acid- and insulin-stimulated mTORC1 signaling and that blocking the early/late endosomal conversion prevents mTOR from interacting with Rheb in the late endosomal compartment.
منابع مشابه
mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation.
mTORC1 plays a key role in autophagy as a negative regulator. The currently known targets of mTORC1 in the autophagy pathway mainly function at early stages of autophagosome formation. Here, we identify that mTORC1 inhibits later stages of autophagy by phosphorylating UVRAG. Under nutrient-enriched conditions, mTORC1 binds and phosphorylates UVRAG. The phosphorylation positively regulates the a...
متن کاملE2F1 Regulates Cellular Growth by mTORC1 Signaling
During cell proliferation, growth must occur to maintain homeostatic cell size. Here we show that E2F1 is capable of inducing growth by regulating mTORC1 activity. The activation of cell growth and mTORC1 by E2F1 is dependent on both E2F1's ability to bind DNA and to regulate gene transcription, demonstrating that a gene induction expression program is required in this process. Unlike E2F1, E2F...
متن کاملTHE EFFECT OF 4 WEEKS’ AEROBIC TRAINING ON THE CONTENT OF MTORC1 SIGNALING PATHWAY PROTEINS IN HEART TISSUE OF TYPE 1 DIABETES RATS
Background: The mTORC1 pathway is one of the important pathways for protein synthesis in the heart, which can lead to physiological or pathological hypertrophy. Diabetes can lead to defects in this pathway. The aim of this study was to examine the effect of 4 weeks’ aerobic training on the content of mTORC1 signaling pathway proteins in heart tissue of type 1 diabetes rats. Methods: In this ...
متن کاملRegulation of TFEB and V-ATPases by mTORC1
Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is an important, highly conserved, regulator of cell growth. Ancient among the signals that regulate mTORC1 are nutrients. Amino acids direct mTORC1 to the surface of the late endosome/lysosome, where mTORC1 becomes receptive to other inputs. However, the interplay between endosomes and mTORC1 is poorly understood. Here, we report the disc...
متن کاملThe effect of resistance training on PI3K/mTORc1 signaling in left ventricular of diabetes rats
Background: Clinical evidence points to the effective role of genetic factors and intracellular signaling pathways in physiological cardiac hypertrophy. This study aimed to assess the response of PI3K/mTORc1 signaling pathway in cardiac tissue to resistance training in obese diabetic rats. Materials and Methods: For this purpose, 21 male wistar rats (220±20 g) were obese by 6 weeks high fat di...
متن کامل